Supporting Information:

Lactone 5. To a solution of methoxy acetal 1 (40 mg, 0.123 mmol) and 1,3-propanedithiol (16 µL, 0.16 mmol) was added BF₃·Et₂O (17 μL, 0.135 mmol) in MeCN (1.2 mL) at 0 °C. The solution was stirred 0.5 h at this temperature and then diluted with MTB ether. After addition of NaHCO3 and sat. aq. NaHCO3 at 0 °C the aqueous phase was separated, carefully neutralized with conc. HCl solution and extracted with MTBE, until no product was detectable in the aqueous layer (tlc). The combined organic layers were washed with brine, dried (Na₂SO₄:Na₂CO₃ = 2:1) and evaporated. The crude product was diluted in CH₂Cl₂ and PPTS (15 mg, 0.061 mmol) was added. The mixture was stirred 1 h at room temperature and neutralized with Et₃N. Flash chromatography (SiO₂, MTBE) afforded the lactone 5 (24 mg, 80%) as a clear oil. $\left[\alpha\right]_{D}^{20}$ = -2.6° (c 0.1, CHCl₃); IR (CHCl₃) v 3682, 3608, 3501, 2979, 2907, 1734, 1514, 1424, 1366, 1230, 1174, 1078, 930 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.59 (m, 1 H, CO₂CH), 4.37-4.26 (s, 2 H, SCHS and CHOH), 2.98-2.80 (m, 5 H, $SCH_2CH_2CH_2S$ and CH_2CO_2), 2.50 (dd, $^2J = 17.2$ Hz, $^{3}J = 7.5$ Hz, 1 H, $CH_{2}CO_{2}$), 2.32-2.25 (m, 1 H, CHCH₂CH(OH)), 2.23-2.03 (m, 3 H, SCHSCH₂CH and SCH₂CH₂CH₂S and OH), 1.91-1.76 (m, 2 H, SCHSCH₂CH and SCH₂CH₂CH₂S), 1.68-1.57 (m, 1 H, CHCH₂CH(OH)); ¹³C NMR (100 MHz, CDCl₃) δ 170.49 (4°, CO₂), 73.26 (3°, CO₂CH), 63.57 (3°, CHOH), 42.64 (3°, SCHS), 41.25 $(4^{\circ}, C(CH_3)_2), 39.41 (2^{\circ}, CH_2CO_2), 37.74 (2^{\circ},$ CHCH2CH(OH)), 30.74/29.77 (2°, SCH2CH2CH2S), 25.83 (2°, SCH₂CH₂CH₂S); MS (140 °C) m/z 248 (M⁺, 40), 230 (2), 197 (2), 183 (2), 171 (2), 159 (19), 145 (16), 133 (26), 123 (5), 119 (100), 106 (11), 97 (11), 73 (24); HRMS calcd for $C_{10}H_{16}O_3S_2$ (M⁺) 248.0541, found 248.0543.

Triol 7. To a solution of methoxy acetal 1 (100 mg, 0.31 mmol) in THF (2.5 mL) at 0 °C LiAlH₄ (0.37 mL, 0.37 mmol, 1.0 M solution in THF) slowly was added and stirrred for 1 h at ambient temperature. The mixture was cooled to 0 °C and quenched as follows: Addition of (i) 50 μ L EtOAc, (ii) 20 μ l H₂O , 20 μ l 2 N aqueous NaOH solution and (iv) 50 μ l H₂O. The precipitate formed was removed by filtration. The filtrate was dried (Na₂SO₄: Na₂CO₃ = 1:1), concentrated *in vacuo* and the crude product was purified by column chromatography (SiO₂, MTBE) to leave alkohol 6 (91 mg, 99%) as a colourless oil.

To a solution of methoxy acetal **1** (66 mg, 0.22 mmol) and 1,3-propanedithiol (29 μ L, 0.27 mmol) was added BF₃·Et₂O (123 μ L, 1.0 mmol) in MeCN (2.2 mL) at -20 °C. The solution was warmed up to room temperature and stirred for 2.5 h and then diluted with EtOAc. After addition of NaHCO₃ and sat. aq. NaHCO₃ at 0 °C the aqueous phase was separated, carefully neutralized with conc. HCl solution, saturated with NaCl and extracted with EtOAc, until no product was detectable in the aqueous layer (tlc). The combined organic layers were dried (Na₂SO₄:Na₂CO₃ = 2:1) and evaporated. Flash chromatography (SiO₂, MTBE \rightarrow MTBE:MeOH = 8:1) afforded the triol **7** (40 mg, 71%) as a clear oil. [α]_D²⁰ = -0.8° (c 0.05,

CHCl₃); IR (CHCl₃) v 3618, 3452, 2999, 2942, 1425, 1331, 1277, 1242, 1073, 908 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.30-4.14 (m, 3 H, SCHS and CHOHCH₂CH-OH), 3.91-3.24 (m, 5 H, CH₂OH u. OH (3×)), 2.98-2.78 (m, 4 H, SCH₂CH₂CH₂S), 2.17-2.08 (m, 1 H, SCH₂CH₂-CH₂S), 2.02-1.56 (m, 7 H, SCH₂CH₂CH₂S and CH₂CH- $(OH)CH_2CH(OH)CH_2CH_2OH)$; ¹³C NMR (100 MHz, CDCl₃) δ 68.37 (3°, SCHSCH₂CHOH), 65.74 (3°, CHOH-CH₂CH₂OH), 61.08 (2°, CH₂OH), 44.10 (3°, SCHS), 43.22/42.87/38.57 (2°, CH₂CH(OH)CH₂CH(OH)CH₂CH₂-OH), 30.33/30.03 (2°, SCH₂CH₂CH₂S), 25.93 (2°, SCH₂-CH₂CH₂S); MS (140 °C) m/z 252 (M⁺, 3), 234 (37), 207 (3), 189 (3), 171 (3), 159 (20), 145 (12), 133 (22), 127 (25), 119 (100), 109 (11), 106 (14), 101 (13), 83 (9), 73 (24); HRMS calcd for $C_{10}H_{20}O_3S_2$ (M⁺) 252.0854, found 252.0855.

α,β-Unsaturated ester 8. To a solution of ester 1 (1.35 g, 4.16 mmol) in CH₂Cl₂ (30 mL) was added DIBAH (6.2 mL, 6.2 mmol, 1.0 M solution in hexane) dropwise at -78 °C and stirred 0.5 h. At this temperature a solution of Ph₃PCHCO₂Me (4.86 g, 13.56 mmol) in CH₂Cl₂ (12 mL) was added and the solution warmed up to ambient temperature. After 16 h the mixture was concentrated in vacuo and purified by column chromatography (SiO₂, MTBE:PE = 1:1 \rightarrow 3:1) to yield ester 8 (1.06 g, 73%, (α : $\beta \cong 8:1$) as a colourless oil. $[\alpha]_D^{20} = -28.3^\circ$ (c 0.5, CHCl₃); IR (CHCl₃) v 2999, 2951, 2938, 1718, 1660, 1613, 1514, 1438, 1249, 1175, 1122, 1042, 984 cm⁻¹; Data for the α anomer: ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.21 (m, 2 H, Ar-H), 6.98 (dt, ${}^{3}J = 15.7$ Hz, ${}^{3}J = 7.4$ Hz, 1 H, CHCHCO₂CH₃), 6.89-6.84 (m, 2 H, Ar-H), 5.90 (d, ${}^{3}J =$ 15.7 Hz, 1 H, CHCHCO₂CH₃), 4.83 (d, ${}^{3}J = 3.1$ Hz, 1 H, CH₃OCH), 4.46 (s, 2 H, CH₂Ar), 3.91-3.76 (m, 5 H, CH3OAr and CHOAr and CHCH2CHCH), 3.73 (s, 3 H, CO₂CH₃), 3.30 (s, 3 H, CH₃OCH), 2.49-2.32 (m, 2 H, CHC H_2 CHCH), 2.20-2.13 (m, 1 H, CH₃OCHC H_2 -eq), 2.07-2.00 (m, 1 H, CH₂CHCH₂CHCH-eq), 1.58-1.48 (m, 1 H, CH₃OCHC H_2 -ax), 1.30 (q, $^{2/3}J = 11.8$ Hz, C H_2 CH-CH₂CHCH-ax); ¹³C NMR (100 MHz, CDCl₃) δ 166.73 (4°, CO₂CH₃), 159.18 (4°, Ar-C), 145.05 (3°, CHCHCO₂CH₃), 130.68 (4°, Ar-C), 129.15 (3°, m-Ar-C), 123.23 (3°, CH-CHCO₂CH₃), 113.85 (3°, o-Ar-C), 99.29 (3°, CH₃OCH), 70.38 (3°, CHOAr), 69.62 (2°, CH₂Ar), 66.53 (3°, CHCH₂-CHCH), 55.28 (1°, CH₃OCH), 54.72 (1°, CH₃OAr), 51.44 (1°, CO₂CH₃), 38.64 (2°, CHCH₂CHCH), 37.72/36.36 (2°, CH₃OCHCH₂ u. CH₂CHCH₂CHCH); MS (100 °C) m/z 350 $(M^+, 1), 318(2), 300(1), 280(1), 251(1), 228(1), 198(1),$ 181 (3), 150 (7), 137 (20), 121 (100), 97 (6), 91 (3), 85 (4), 81 (6), 77 (4); HRMS calcd for $C_{18}H_{22}O_5$ (M⁺-CH₃OH) 318.1467, found 318.1467.

Diol **9**. To a solution of methoxy acetal **8** (1.08 g, 3.08 mmol) and 1,3-propanedithiol (400 μ L, 4 mmol) was added BF₃·Et₂O (495 μ L, 4 mmol) in MeCN (16 mL) at 0 °C. The solution was warmed up to room temperature, stirred for 0.5 h and then diluted with MTB ether. After addition of NaHCO₃ and sat. aq. NaHCO₃ at 0 °C the aqueous phase was separated, carefully neutralized with conc. HCl solution and extracted with MTB ether (5 ×).

The combined organic layers were washed with brine, dried (Na₂SO₄) and evaporated. Flash chromatography (SiO₂, MTB:PE = 3:1) afforded the lactone **9** (660 mg, 70%) as a clear oil. $[\alpha]_D^{20} = -7.2^\circ$ (c 1, CHCl₃); IR (CHCl₃) v 3688, 3609, 3502, 2999, 2950, 2907, 1717, 1660, 1437, 1279, 1230, 1173, 1042 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.97 (dt, ${}^{3}J = 15.7 \text{ Hz}$, ${}^{3}J = 7.4 \text{ Hz}$, 1 H, CHCHCO₂CH₃), 5.95-5.87 (m, 1 H, CHCHCO₂CH₃), 4.29-4.21 (m, 2 H, CH(OH)CH₂CHCH and SCHS), 4.10 (qui, $^{3}J = 6.2$ Hz, 1 H, SCHSCH₂CHOH), 3.73 (s, 3 H, OCH₃), 3.52-3.25 (bs, 1 H, OH), 2.96-2.80 (m, 4 H, SCH₂CH₂CH₂S), 2.49-2.35 (m, 2 H, CH₂CHCH), 2.11-2.08 (m, 1 H, SCH₂CH₂CH₂S), 2.03 (m, 3 H, SCH₂CH₂CH₂S and C(OH)CH₂CH(OH) u. OH), 1.66 (m, 2 H, SCHSCH₂CHOH), 1.51-1.39 (m, 1 H, C(OH)C H_2 CH(OH)); ¹³C NMR (100 MHz, CDCl₃) δ 166.90 (4°, CO₂CH₃), 145.51 (3°, CHCHCO₂CH₃), 123.40 (3°, CHCHCO₂CH₃), 67.54/65.84 (3°, CH(OH)CH₂CH-(OH)), 51.55 (1°, OCH₃), 44.08 (3°, SCHS), 42.64/42.54 (2°, CH₂CH(OH)CH₂CH(OH)), 40.30 (2°, CH₂CHCH), 30.24/29.99 (2°, SCH₂CH₂CH₂S), 25.87 (2°, SCH₂CH₂-CH₂S); MS (130 °C) m/z 306 (M⁺, 8), 288 (8), 257 (5), 228 (5), 207 (16), 189 (18), 167 (15), 159 (13), 145 (14), 133 (33), 119 (100), 106 (16), 101 (24), 97 (20), 81 (31); HRMS calcd for C₁₃H₂₂O₄S₂ (M⁺) 306.0960, found 306.0962.

Alcohol trans-10. To a mixture of NaH (5.7 mg, 0.143 mmol, 60% in paraffin) in THF (0.3 mL) a solution of 9 (20 mg, 0.065 mmol) in THF (0.3 mL) was added dropwise at -78 °C. The mixture was warmed up to 0 °C over 2.5 h and quenched with 2 N HCl/MeOH (1/2, 1 mL). After dilution with MTB ether and water, the phases were separated and the aqueous layer was extracted with MTB ether (3 ×). The combined organic layers were washed with brine, dried (Na₂SO₄), concentrated in vacuo and purified by flash chromatography (SiO_2 , MTB:PE = 3:1) to afford C-glycosides trans-10 and cis-10 (15.5 mg, 78%, 81:19) as a clear oil. $[\alpha]_D^{20} = -10.3^\circ$ (c 0.3, CHCl₃); IR (neat) v 3612, 2940, 1733, 1511, 1434, 1366, 1306, 1273, 1172, 1082, 1025, 909 cm⁻¹; Data for the *C*-glycoside *trans*-10: ¹H NMR (400 MHz, CDCl₃) δ 4.58-4.50 (m, 1 H, CHCH₂CO₂CH₃), 4.19 (dd, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 3.1$ Hz, 1 H, SCHS), 4.08-3.99 (m, 1 H, SCHSCH₂CH), 3.97-3.90 (m, 1 H, CHOH), 3.71 (s, 3 H, OCH₃), 2.94-2.80 (m, H, SC H_2 CH $_2$ CH $_2$ S), 2.75 (dd, $^2J = 15.1$ Hz, $^3J = 8.4$ Hz, 1 H, C H_2 CO $_2$ CH $_3$), 2.50 (dd, $^2J = 15.1$ Hz, $^3J = 6.4$ Hz, 1 H, CH₂CO₂CH₃), 2.18-2.05 (m, 2 H, SCH₂CH₂CH₂S and SCHSCH₂CH), 1.99-1.77 (m, 5 H, SCH₂CH₂CH₂S and CH₂CH(OH)CH₂ and OH), 1.72-1.63 (m, 1 H, SCHS- CH_2CH), 1.36-1.25 (m, 1 H, $CH_2CHCH_2CO_2CH_3$); ¹³C NMR (100 MHz, CDCl₃) δ 171.46 (4°, CO₂CH₃), 68.06 (3°, SCHSCH₂CH), 66.07 (3°, CHOH), 64.13 (3°, CHCH₂CO₂CH₃), 51.74 (1°, OCH₃), 43.40 (3°, SCHS), 41.01 (2°, CH₂CO₂CH₃), 39.81/37.67/37.55 (2°, CH₂CH-(OH)CH₂ and SCHSCH₂CH), 30.25/29.79 (2°, SCH₂-CH₂CH₂S), 26.08 (2°, SCH₂CH₂CH₂S); MS (70 °C) m/z 306 (M⁺, 2), 121 (1), 119 (2), 106 (4), 97 (1), 88 (3), 86 (21), 84 (32), 81 (2), 74 (4), 73 (100), 71 (1); HRMS calcd for $C_{13}H_{22}O_4S_2$ (M⁺) 306.0960, found 306.0959. The relative configuration of alcohol trans-10 was confirmed

by spectroscopic comparison with related 2,6-trans-C-glycosides (reference 11f) and C-glycoside cis-10. NOE experiments were not possible because of the complex multiplicities in combination with the chemical shifts.

Alcohol cis-10. To a mixture of NaH (10.4 mg, 0.261 mmol, 60% in parrafine) in THF (1 mL) a solution of 9 (80 mg, 0.261 mmol) in THF (2 mL) was added dropwise at -40 °C. The mixture was warmed up to room temperature over 1 h, stirred 7 h and quenched with 2 N HCl/MeOH (1/2, 2 mL). After dilution with MTB ether and water, the phases were separated and the aqueous layer was extracted with MTB ether $(3 \times)$. The combined organic layers were washed with brine, dried (Na₂SO₄), concentrated in vacuo and purified by flash chromatography (SiO₂, MTB:PE = 3:1) to afford C-glycosides trans-10 and cis-10 (49 mg, 61%, 2:98) as a clear oil. $[\alpha]_D^{20} = -0.6^\circ$ (c 0.1, CHCl₃); IR (neat) v 3400, 2941, 2914, 1734, 1512, 1435, 1373, 1311, 1273, 1198, 1145, 1079, 1029, 909 cm⁻¹; Data for the Cglycoside *cis-10*: 1 H NMR (400 MHz, CDCl₃) δ 4.18 (dd, $^{3}J = 9.9 \text{ Hz}, ^{3}J = 4.8 \text{ Hz}, 1 \text{ H, SCHS}, 3.91-3.82 (m, 1 \text{ H}, 1 \text{ H})$ CHOH), 3.81-3.74 (m, 1 H, SCHSCH₂CH), 3.70 (s, 3 H, OCH₃), 3.68-3.60 (m, 1 H, CHCH₂CO₂CH₃), 2.92-2.80 (m, H, $SCH_2CH_2CH_2S$), 2.62 (dd, $^2J = 15.0 \text{ Hz}$, $^3J = 7.6 \text{ Hz}$, 1 H, $CH_2CO_2CH_3$), 2.45 (dd, $^2J = 15.0 \text{ Hz}$, $^3J = 5.6 \text{ Hz}$, 1 H, CH₂CO₂CH₃), 2.15-2.06 (m, 1 H, SCH₂CH₂CH₂S), 2.05-1.77 (m, 5 H, SCH₂CH₂CH₂S and CH₂CH(OH)CH₂ and SCHSCH₂CH), 1.70-1.60 (bs, 1 H, OH), 1.24-1.13 (m, 2 H, $CH_2CH(OH)CH_2$); ¹³C NMR (100 MHz, CDCl₃) δ 171.37 (4°, CO₂CH₃), 72.11/71.73 (3°, SCHSCH₂CH u. CHCH₂CO₂CH₃), 67.66 (3°, CHOH), 51.67 (1°, OCH₃), 43.41 (3°, SCHS), 41.45 (2°, CH₂CO₂CH₃), 40.98/40.71/ 40.56 (2°, CH₂CH(OH)CH₂ and SCHSCH₂CH), 30.24/ 29.85 (2°, SCH₂CH₂CH₂S), 26.01 (2°, SCH₂CH₂CH₂S); MS (120 °C) m/z 306 (M⁺, 100), 275 (7), 199 (17), 181 (30), 159 (29), 145 (25), 141 (13), 133 (14), 123 (9), 119 (87), 113 (6), 107 (9), 97 (12), 84 (21), 81 (38), 73 (36); HRMS calcd for C₁₃H₂₂O₄S₂ (M⁺) 306.0960, found 306.0960. The relative stereochemistry of alcohol cis-10 was confirmed by a NOE experiment: Irradiation of the proton at the new stereogenic centre (3.68-3.60 ppm, CHCH₂CO₂CH₃) led to enhancement of the signals at 3.81-3.74 ppm (9.4%, SCHSCH₂CH) and 3.91-3.82 ppm (3.4%, CHOH).

Benzoate ester **11**. To a mixture of *cis*-**10** (31 mg, 0.1 mmol), PPh₃ (365 mg, 1.4 mmol) and *p*-nitrobenzoic acid (50 mg, 0.3 mmol) in toluene (1.8 mL) DEAD (32 μ L, 0.2 mmol) was added at 0 °C. The mixture was stirred for 1 h at ambient temperature, quenched with water and diluted with MTB ether. The aqueous layer was extracted with MTB ether (2 ×) and the combined organic layers were washed with brine, dried over Na₂SO₄, concantrated *in vacuo* and purified by column chromatography (SiO₂, MTB:PE = 1:3) to give **11** (39 mg, 85%) as yellow oil. [α]_D²⁰ = -1.6° (c 0.2, CHCl₃); IR (CHCl₃) v 3111, 3080, 2973, 2949, 2904, 1722, 1608, 1528, 1437, 1348, 1274, 1201, 1117, 1103, 1078, 1014 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.34-8.30 (m, 2 H, Ar-*H*), 8.26-8.22 (m, 2 H, Ar-*H*), 5.50 (qui, ²*J* = 2.8 Hz, 1 H, C*H*OAr), 4.28-4.19 (m, 2

H, SCHS and SCHSCH₂CH), 4.14-4.06 (m, 1 H, CHCH₂CO₂CH₃), 3.71 (s, 3 H, OCH₃), 2.94-2.79 (m, H, $SCH_2CH_2CH_2S$), 2.60 (dd, $^2J = 15.1 \text{ Hz}$, $^3J = 8.0 \text{ Hz}$, 1 H, $CH_2CO_2CH_3$), 2.45 (dd, $^2J = 15.1$ Hz, $^3J = 5.3$ Hz, 1 H, CH₂CO₂CH₃), 2.16-2.07 (m, 1 H, SCH₂CH₂CH₂S), 2.05-1.76 (m, 5 H, SCH₂CH₂CH₂S and CH₂CH(OH)CH₂ and SCHSCH₂CH), 1.70-1.58 (m, 2 H, CH₂CH(OH)CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 171.25 (4°, CO₂CH₃), 163.65 $(4^{\circ}, CO_2Ar), 150.65 (4^{\circ}, Ar-C), 135.68 (4^{\circ}, Ar-C), 130.82$ (3°, Ar-C), 123.66 (3°, Ar-C), 69.51/69.37/68.97 (3°, SCHSCH₂CH and CHCH₂CO₂CH₃ and CHOAr), 51.76 (1°, OCH₃), 43.25 (3°, SCHS), 41.54 (2°, CH₂CO₂CH₃), 40.98 (2°, SCHSCH₂CH), 35.26/35.10 (2°, CH₂CH(OAr)-CH₂), 30.39/29.98 (2°, SCH₂CH₂CH₂S), 25.99 (2°, SCH₂CH₂CH₂S); MS (150 °C) m/z 455 (M⁺, 16), 313 (1), 288 (2), 253 (12), 194 (10), 181 (21), 150 (100), 145 (8), 119 (14), 104 (19), 97 (3), 84 (28), 81 (15), 73 (65).